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Abstract: As Autonomous Surface Vessels (ASVs) become increasingly prevalent in marine
applications, ensuring their safe operation, in the presence of faults, is crucial to human safety.
This paper presents a scheme that encompasses the detection and isolation of actuator faults
within ASVs to ensure uninterrupted and safe operation. The method primarily addresses the
loss of thruster effectiveness as a specific actuator fault. For fault detection, the proposed
method leverages residuals generated by nonlinear observers, coupled with adaptive thresholds,
enhancing fault detection accuracy. The active fault isolation strategy employs actuator
redundancy to insulate specific system states from faults by dynamically reconfiguring the
actuation configuration in response to detected faults. Comprehensive simulation results
demonstrate the effectiveness of this methodology across diverse marine traffic scenarios where
the ASV needs to perform a collision avoidance maneuver.
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1. INTRODUCTION

In recent years, there has been a strong interest in de-
veloping autonomous solutions for marine systems, span-
ning various applications. These include for example au-
tonomous surface vessels in the transportation of passen-
gers and goods, unmanned surface vessels for environmen-
tal monitoring and bathymetric mapping, and autonomous
underwater vehicles employed in tasks such as exploration
and inspection of underwater structures. While these con-
stitute promising, cost-effective solutions that could en-
hance efficiency, there are still concerns regarding the safe
operation and reliability of these systems especially in
environments shared with other human-operated vehicles.

As autonomous vehicles heavily rely on components such
as sensors, actuators, computation units, and various other
systems, a major concern revolves around the potential
consequences of component faults or complete failures dur-
ing operation. Recent research has predominantly focused
on Fault-Tolerant Control (FTC) for these systems, aiming
to maintain system functionality or ensure safety despite
the occurrence of faults or failures. This paper focuses on
Fault Diagnosis (FD), a critical component of FTC that
aims to enhance the system’s health understanding. Our
work highlights the importance of accurately identifying
and localizing faults, thereby improving the safety and
reliability of autonomous marine vessels.

⋆ The research leading to these results has received funding from the
Dutch Science Foundation NWO-TTW within the Veni project No.
18165 (HARMONIA) and the European Union’s Horizon 2020 re-
search and innovation program under grant agreement No. 101096923
(SEAMLESS Project). This publication reflects only the authors’
view, exempting the European Union and the granting authority
from any liability.

Fault Diagnosis encompasses both Fault Detection and
Isolation (FDI), enabling the system to precisely pinpoint
and identify the nature and location of the fault. For
instance, in Corradini et al. (2010), an actuator fault-
tolerant control scheme designed for an underwater Re-
motely Operated Vehicle (ROV) integrates detection, iso-
lation, and accommodation modules. This work relies on
residual generation modules for detection and exploits
the specific actuator configuration for isolation through
the sliding surface of a designed sliding mode controller
(Cocquempot et al. (1998)). The same ROV was studied in
Freddi et al. (2013) where the authors focus on the problem
of detection only, based on a nonlinear Thau observer for
residual generation and on a sequential change detection
algorithm for residual evaluation. In Baldini et al. (2022a)
an active FD method is proposed for the same system so
that actuator faults can be discerned from other distur-
bances by applying an auxiliary sinusoidal input system
that is designed to propagate into the control system when
a fault occurs while having minimal impact on the system
dynamics. In Baldini et al. (2022b) a bank of observers
is used for FDI in cascade with a nonlinear disturbance
observer for fault estimation under the assumption that
only a single fault may occur. Fault detection was studied
for an underactuated surface vessel in Park and Yoo (2016)
where a robust fault detection observer and a time-varying
detection criterion are presented to detect the actuator
faults distinguished from uncertainties and external dis-
turbances. An FTC strategy for linear systems is proposed
in Cristofaro and Johansen (2014) with active FD that
relies on the control redundancy of an overactuated ASV
by constraining the inputs in prescribed configurations for
Fault Detection, Isolation, and Reconfiguration (FDIR).
However, this work relied on the linearization of vessel
dynamics, assuming that the vessel’s rotation is negligible
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Fig. 1. Schematic method overview (light orange block).
Fault detection and isolation are realized given the
input u(t) and measurement y(t).

with respect to translation motion, which might not hold
in collision avoidance maneuvers.

This paper introduces an active FDI scheme designed to
work in tandem with a rule-compliant trajectory opti-
mization algorithm for ASVs proposed in Tsolakis et al.
(2024). Our primary contribution is the development of
a planning-integrated active FD algorithm capable of de-
tecting and isolating actuator faults, enhancing overall
safety by proactively accounting for actuator faults. For
fault detection, unlike existing methods that use fixed or
heuristic thresholds, we derive adaptive thresholds that are
dynamically adjusted based on the system’s nonlinearities
improving fault detection accuracy while also accounting
for bounded noise and disturbances. For fault isolation,
our method leverages control redundancy alongside the ex-
plicit description of model dynamics and input constraints
in the Model Predictive Control (MPC) formulation of
Tsolakis et al. (2024), facilitating the isolation process
without the need for auxiliary modules for control allo-
cation and input saturation in contrast to previous works.

This paper is organized as follows: Section 2 describes
the formulated FDI problem for a 3 Degrees of Freedom
(DoF) ASV under environmental disturbances, measure-
ment noise, and specific actuator faults. Section 3 details
the fault diagnosis method, which involves a cascaded de-
tection and isolation procedure. Finally, Section 4 presents
simulation results and Section 5 concludes the paper with
some additional remarks on future work.

2. PROBLEM FORMULATION

We consider the ASV dynamics as a 3-DoF system in pla-
nar motion. We assume that the ASV is already equipped
with a set of sensors and actuators as well as the tra-
jectory optimizer developed in Tsolakis et al. (2024) for
rule-compliant collision avoidance (highlighted in blue in
Figure 1). In this work, we focus on developing the “FDI”
block, highlighted in orange in Figure 1, that utilizes the
system’s input and output data.

The vessel dynamics are described by the maneuvering
model in Fossen (2011). The ASV’s configuration is de-
scribed by its position p = (x, y)⊤, orientation ψ, longitu-
dinal and lateral velocities u, v, and yaw rate r. Note that
the velocities are expressed in the body reference frame of
the vessel. We then denote as z = (x, y, ψ, u, v, r)⊤ ∈ Z ⊂

Fig. 2. Schematic representation of the actuators’ config-
uration with two azimuth thrusters at the stern and
one bow thruster.

R6 the system’s state and as u = (τl, τr, τb, αl, αr)
⊤ ∈

U ⊂ R5 the control input of an overactuated ASV with
two azimuth thrusters at its beam and one bow thruster.
Specifically, we denote as τl, τr, and αl, αr the thrusts
and azimuths of the left and right azimuth thruster respec-
tively, and as τb the thrust produced by the bow thruster of
the ASV. Environmental disturbance forces from the wind
and waves are denoted as τd ∈ D ⊂ R3. The evolution of
the system’s state is expressed by the following continuous,
nonlinear system:

ż =

[
03×3 R(z)
03×3 −M−1(C(z) +D(z))

]
z︸ ︷︷ ︸

f(z)

+

M̃︷ ︸︸ ︷[
03×3

M−1

]
τ (u)︸ ︷︷ ︸

g(u)

+

M̃︷ ︸︸ ︷[
03×3

M−1

]
τd︸ ︷︷ ︸

d

(1a)

with:
M = MRB +MA, (1b)

C(z) = CRB(z) +CA(z), (1c)

D(z) = DL +DNL(z), (1d)

τ (u) =


ηlτl cosαl + ηrτr cosαr

ηlτl sinαl + ηrτr sinαr + ηbτb
wlr(ηrτr cosαr − ηlτl cosαl)−

llr(ηlτl sinαl − ηrτr cosαr) + lbηbτb


(1e)

where R(z) is the rotation matrix, MRB the rigid-body
mass matrix, CRB(z) the rigid-body Coriolis and cen-
tripetal matrix, MA the added-mass matrix, CA(z) the
added Coriolis and centripetal matrix, DL, DNL(z), the
linear and nonlinear damping matrices, τ the general-
ized force vector acting on the vessel, and wlr, llr, lb
are length parameters that describe the configuration of
the thrusters. The added-mass and Coriolis matrices are
introduced due to hydrodynamic forces when we consider
the additional forces resulting from the fluid acting on
the vessel. The thrust force from the actuators in healthy
conditions is denoted as τ (u) with {ηl, ηr, ηb} fault param-
eters described at the end of this section. Actuator limita-
tions are considered as well. The actuators’ configuration
is illustrated in Figure 2.

We model disturbances based on Du et al. (2021) where
the prevailing disturbance force is due to the wind, and
then wave and current disturbance forces are due to the



wind forces. We assume that this disturbance is unknown
but with a known upper bound denoted as τ̄d. We,
therefore, model disturbance as a truncated Gaussian
random variable with mean µd and variance Σd:

τd ∼ N (µd,Σd) for µd − 2Σd ≤ τd ≤ µd − 2Σd (2)

We assume that we have access to a full-state measurement
that is corrupted by a noise signal n that is unknown but
bounded with the bound denoted as n̄:

y = z + n (3)

We model noise measurement as a zero-mean truncated
Gaussian random variable with variance Σn:

n ∼ N (0,Σn) for − 2Σn ≤ n ≤ −2Σn (4)

Lastly, for fault modeling, we consider actuator faults and
more specifically thruster loss of effectiveness (LoE), which
is widely considered as a relevant actuator fault Cristofaro
and Johansen (2014); Chen et al. (2016); Park and Yoo
(2016); Baldini et al. (2022b). The fault parameters in (1e)
are then given as:

ηj =

{
1, t < tfi
0 < ηj < 1, t ≥ tfi

(5)

For healthy conditions, we have ηj = 1 while ηj = 0 means
complete failure. Time instant tfi denotes the time a fault
occurs. We further assume that the fault happens abruptly
after fault time tfi and that only single faults occur since
in practice it is infrequent that two or more actuator
faults occur simultaneously (Baldini et al. (2022b); Wang
(2020)). We also assume that there are no sensor faults
affecting the system.

The goal of this work is to develop a scheme that can
detect and isolate parameters ηj , i ∈ {l, r, b} when these
deviate from healthy conditions (i.e., when ηj ̸= 1) under
disturbances (2) and measurement noise (4).

3. ACTIVE THRUSTER FAULT DIAGNOSIS

3.1 Residuals & Thresholds

The system equations (1) and (3) can be re-written in
compact form as:

ż = f(z) + g(u) + d (6a)

y = z + n (6b)
We design a nonlinear observer to generate residuals and
the respective adaptive thresholds. The nonlinear observer
can be expressed as:

˙̂z = f(ẑ) + gH(u) +Λ(y − ŷ) (7a)

ŷ = ẑ (7b)
where ẑ is the state estimate vector and Λ is the observer
gain which is a positive definite diagonal matrix and gH(u)
denotes the input map in healthy conditions i.e., when
there are no actuator faults and ηj = 1, ∀j ∈ {l, r, b}. The
residual is expressed as:

ϵ = y − ŷ (8)

Substituting (6b) to (8) and using the triangle inequality
we get:

| y − ŷ︸ ︷︷ ︸
residual

| ≤ |z̃|+ n̄ (9)

with z̃ = z − ẑ the state error. Note that inequalities
between matrices are to be interpreted element-wise where

| · | denotes the matrix modulus function, i.e., the element-
wise absolute value as in Johansson et al. (2006). In the
following, we derive the expressions on the two sides of (9)
for detection and isolation.

For the adaptive threshold given in the right-hand side
of (9), we have the known noise bound n̄. A bound on
the state error z̃, however, is more involved to derive.
Following the same approach of Reppa et al. (2016), we
first derive the state error dynamics by subtracting (7a)
from (6a):

˙̃z = f(z)− f(ẑ) + g(u)− gH(u)−Λz̃ −Λn+ d (10)

If we further assume healthy conditions, (10) takes the
form:

˙̃z = f(z)− f(ẑ) +Λz̃ −Λn+ d (11)

After rearranging terms and integrating both sides of the
equation we get:

z̃=e−Λtz̃(0)+

∫ t

0

eΛ(τ−t) [f(z)− f(ẑ)− Λn+ d] dτ (12)

This equation cannot be evaluated as n and d are un-
known. Nevertheless, we can look for a proper bound of
z̃ based on the boundness assumptions for n and d. We
then have:

|z̃|=
∣∣∣∣e−Λtz̃(0)+

∫ t

0

eΛ(τ−t) [f(z)−f(ẑ)−Λn+d] dτ

∣∣∣∣ (13)

which by leveraging the triangle inequality becomes:

|z̃| ≤
∣∣e−Λt

∣∣ |z̃(0)|︸ ︷︷ ︸
α

+

∫ t

0

∣∣∣eΛ(τ−t)
∣∣∣ (|f(z)− f(ẑ)|+ Λn̄+ d̄

)︸ ︷︷ ︸
ξ

dτ

︸ ︷︷ ︸
β

(14)

The homogeneous term α depends on the initial state error
for which we have |z̃(0)| ≤ |y(0)| + n̄ + ¯̂x where ¯̂x is
a known bound in the initial state estimate. This term
will die out because of the exponential term in a negative
power. Term β can be computed by numerical integration
of β̇ = −Λβ + ξ with zero initial conditions. While we
can have the state estimate ẑ to evaluate f(ẑ) in (14), the
state z is unknown and thus the term f(z) is unknown as
well. Nevertheless, we can substitute z = y − n and then
expand the expression f(y − n) by leveraging again the
triangular inequality to get an upper bound for the right-
hand side of (14). Thus, a bound for the right-hand side
of (8) can be computed and will be denoted as ϵ̄ with:

|z̃|+ n̄ ≤ ϵ̄︸︷︷︸
threshold

(15)

Thus, we have the following inequality that holds in
healthy conditions where both terms can be evaluated:

|ϵ(y, ŷ)| ≤ ϵ̄(y, ŷ, n̄, d̄) (16)

The adaptive threshold varies with respect to the estimate
of the system while it takes into account the corruption of
this signal from worst-case disturbance and noise signals.

3.2 Fault Diagnosis

The presence of actuator faults is detected by the following
set of analytical redundancy relations (ARRs):



ηl ηr ηb
Eu 1 1 0
Ev 1 1 1
Er 1 1 1

Table 1. Actuator FSM F

Ei : |ϵi(t)| − ϵ̄i(t) ≤ 0, i ∈ {x, y, ψ, u, v, r} (17)

where |ϵi(t)| and ϵ̄i(t) are the elements of |ϵ(t)| and ϵ̄(t)
in (16) respectively. Violation of one of these ARRs at
any time instance means that the real system is behaving
significantly differently with respect to the healthy system
model used in the nonlinear observer. Since this discrep-
ancy is not due to measurement noise or disturbances
as they have already been accounted for, we can then
conclude that a fault has occurred. The first time instant
that (17) is invalid for at least one i ∈ {x, y, ψ, u, v, r}
signifies the time instant of fault detection defined as:

tDi
= min{t : |ϵi(t)| − ϵ̄i(t) > 0} (18)

Until this instant, we assume that either no faults have
occurred or there are faults that have not been detected
yet. The binary decision for a detected fault is defined as:

D(t) =

{
0, t < tD
1, t ≥ tD

(19)

with tD = min{tDi
: i ∈ {x, y, ψ, u, v, r}}. Thus a fault is

detected at any time when D(t) = 1.

For isolation, we investigate how each one of the LoE faults
ηj , j ∈ {l, r, b} affects the system. First, we need to create
a binary Fault Signature Matrix (FSM) as a reference and
then a binary decision vector that through comparison
with the FSM will pinpoint the exact location of the fault.
For the FSM, we need to find the effect of each actuator
fault on the residuals, that is, how the discrepancy due
to the occurring faults denoted as g̃(u) = g(u) − gH(u)
affects the error dynamics (10). We compute the Jacobian
of g̃(u) with respect to the vector of faults η = (ηl, ηr, ηb)

⊤

as:

∇ηg̃(u) =


0 0 0
0 0 0
0 0 0

g̃ul(τl, αl) g̃ur(τr, αr) 0
g̃vl(τl, αl) g̃vr(τr, αr) g̃vb(τb, αb)
g̃rl(τl, αl) g̃rr(τr, αr) g̃rb(τb, αb)

 (20)

The Jacobian matrix, commonly used in sensitivity anal-
ysis, captures the rate of change of the system’s output
(ARRs in our case) concerning small changes in the ac-
tuator faults. Each row of this matrix corresponds to a
specific ARR Ei, i ∈ {x, y, ψ, u, v, r}, and each column
corresponds to a particular actuator fault ηj , j ∈ {l, r, b},
offering insights into the impact of each fault on the ARRs.
After computing the Jacobian matrix (20), it is observed
that the first three ARRs (Ei, i ∈ {x, y, ψ}) do not ex-
hibit sensitivity to the actuator faults (ηj , j ∈ {l, r, b}).
Consequently, these states are omitted from the FSM, as
their inclusion would not contribute valuable information
regarding fault isolation. The FSM matrix, denoted as
F , is constructed based on the relevant ARRs (Ei where
i ∈ {u, v, r}), resulting in a focused representation that
captures the impact of actuator faults on the observable
system dynamics. The matrix is shown in Table 1.

ηl ηr ηb
Eu 1 1 0
Ev 0 1 1
Er 1 1 1

(a) FSM FR
l

ηl ηr ηb
Eu 1 1 0
Ev 1 0 1
Er 1 1 1

(b) FSM FR
r

Table 2. FSMs after reconfiguration

From Table 1, we can deduce that due to the geometrical
symmetry of the actuators, they affect the dynamics in the
same way. Geometrical symmetry in this context refers to
the similar spatial arrangement or characteristics of the
actuators. Specifically, the actuator faults ηl and ηr exhibit
identical impacts on the ARRs of the system and thus,
distinguishing between these faults becomes challenging.
By utilizing overactuation, the key idea in this work is
to actively change the input vector u so that the effect
of some actuators is nullified in specific ARRs and thus,
the faults can be isolable. Furthermore, this needs to be
realized while keeping the ASV controllable and able to
perform the collision avoidance maneuver needed. Indeed,
if we examine matrix F in Table 1 we see that the two
columns that correspond to faults ηl and ηr are identical.
However, by placing a zero in either column at the row that
corresponds to ARR, Ev, all three columns become linearly
independent, as shown in Table 2. This can be realized by
setting the corresponding term of (20) to zero, meaning
that we want to make that component invariant of the
corresponding control action. Solving either g̃vl(τl, αl) = 0
for αl or g̃vr(τr, αr) = 0 for αr, we get expressions for the
azimuths of the form:

αl = α0
l (M̃ , llr, wlr), αr = α0

r(M̃ , llr, wlr), (21)

and since these parameters are constant, αl and αr can
be set to the constant values α0

l and α0
r respectively

so that they do not affect the sway dynamics and the
corresponding ARR, that is, either g̃vl(τl, α

0
l ) = 0 or

g̃vr(τr, α
0
r) = 0. Choosing for example to nullify the effect

of the right azimuth thruster will result in a different FSM
matrix denoted as FR

r and shown in Table 2b. Note that
fulfillment of either equation in (21) does not nullify the
rest of the terms in (20). To reconfigure the actuators
for isolation purposes, we leverage the MPC controller
in Tsolakis et al. (2024) (see Fig. 1). The MPC recursively
optimizes a multi-objective cost that includes a penalty
on the control inputs accounting at the same time for
collision avoidance and system constraints. The part of
the cost function of our MPC controller (relevant for the
reconfiguration here) regarding the right azimuth input
takes the form:

Jαr
(uk) = qαr

α2
r + qα0

r
(αr − α0

r)
2 (22)

where qαr and qα0
r
are tuning penalty weights and their

value depends on whether we are in normal conditions or
the reconfiguration mode is activated. More specifically, a
higher value of qα0

r
forces the optimizer to stir αr → α0

r.
If the actuator is faulty, then, the real system will not be
able to follow the commanded action. If it is healthy, we are
able to isolate the fault on the other actuator. To complete
the isolation, we need to derive the binary decision vector
to be compared with the updated FSM F r. The binary
decision vector is obtained as:

D = (Du, Dv, Dr)
⊤ (23)

with:



Di(t) =

{
0, t < tDi

1, t ≥ tDi

(24)

with tDi : i ∈ {u, v, r} the time that the ith ARR
is violated for the first time. The active FDI logic is
summarized in Algorithm 1.

Algorithm 1 Proposed Fault Diagnosis Logic

Input: y(t), u(t)
Output: Fault ID: {r, l, b}
1: qαr ← 1
2: qα0

r
← 0

3: for t = 1, 2, . . . do
4: Compute |ϵ(y(t), ŷ(t))| from Eq. (8)
5: Compute ϵ̄(y, ŷ, n̄, d̄) from Eq. (15)
6: Compute D(t) from Eq. (19)
7: if D(t) = 1 then
8: Compute D(t) from Eq. (23)
9: if D(t) = F ( : , 3) then
10: Fault ID: b (ηb ̸= 1)
11: else
12: qαr ← 0
13: qα0

r
← 106

14: And thus:
15: αr ← α0

r(M̃ , b, l)
16: F ← F r

17: Compute D(t) from Eq. (23)
18: if D(t) = F ( : , 2) then
19: Fault ID: r (ηr ̸= 1)
20: else if D(t) = F ( : , 1) then
21: Fault ID: l (ηl ̸= 1)
22: else
23: Fault is not yet isolated
24: end if
25: end if
26: end if
27: end for

4. SIMULATION RESULTS

This section presents simulation results to validate the
efficacy of our algorithm in a simple traffic scenario. Our
framework is implemented in ROS: the controller and FDI
module in C++ and the simulator of the ASV and OV in
Python. The algorithm runs in an Ubuntu machine with
an Intel i7 CPU@1.8GHz and 16GB of RAM.

In this simple traffic scenario, the ASV is obliged by the
traffic rules to avoid collision by turning to its starboard
(right side) and passing behind the OV. While the ASV
is performing the collision avoidance maneuver, at time
tF = 7s we inject a permanent fault to the right thruster,
ηr = 0.1. In Figure 3 we can see the instances of the
ASV at the time the fault occurs tF = 7 sec, the fault
is detected tD = 7.86s, and lastly the fault is isolated
tI = 14.15s. Notice that the time between fault occurrence
tF and isolation tI is relatively small, i.e., the ASV has not
traversed a large distance, highlighting the aptness of the
diagnosis procedure. Figures 4, 5, and 6 show the norm of
the residual coupled with its adaptive threshold and the
violation decision for each one of the three ARRs related
to the velocity states that contribute to the diagnosis
procedure. The first violation is noticed in Figure 4 at
tD = 7.86s. Reconfiguration starts subsequently to nullify
the effect of the faulty thruster on Ev as seen in Figure
5. After a few seconds, at time tI = 14.15s seconds, a

Fig. 3. Plotted trajectories with instances of the vessels at
a) initial time, b) time of fault occurrence, c) time of
detection, d) time of isolation, and e) final time.

Fig. 4. The residual norm, threshold, and decision for the
ARR corresponding to the surge velocity state u.

violation of Er indicates that the fault has occurred in
the right thruster, and thus, isolation is completed. Lastly,
Figure 7 shows the control input in blue solid lines along
with the faulty input signal τFr = ηrτr that is applied on
the ASV plotted in a light blue dashed line right after the
fault has occurred. In the same figure, the reconfigured
control input αr is plotted in red to show the constant
value it has been imposed for isolation purposes.

5. CONCLUSIONS & FUTURE WORK

This work proposed a thruster fault diagnosis algorithm
for an ASV, comprised of a cascaded interconnection of a
detection and an isolation module. The residuals generated
by nonlinear observers are coupled with adaptive thresh-
olds that accommodate noise and disturbance bounds to
enhance robustness against false alarms. For isolation, we
rely on the system’s redundancy in actuation and the ca-
pability to set actuation constraints in our MPC controller



Fig. 5. The residual norm, threshold, and decision for the
ARR corresponding to the sway velocity state v.

Fig. 6. The residual norm, threshold, and decision for the
ARR corresponding to the yaw velocity state r.

Fig. 7. Input signals with the actual input signal τr (light
blue dashed line) after the fault has occurred and the
input signal αr (red line) after reconfiguration.

so that we can isolate thruster faults that otherwise would
be indistinctive due to the system’s symmetry. Simulation
results demonstrate the effectiveness of this methodology.
For future work, we aim to study the accuracy of the
method in more fault scenarios and investigate its sensi-
tivity to minor faults which are harder to detect in the

presence of other uncertainties. We also aim to extend
our method with fault identification and reconfiguration to
influence the planning process, contributing to safer and
more adaptive collision avoidance maneuvers.
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